3.848 \(\int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=107 \[ \frac {A \sin (c+d x) \sqrt {b \cos (c+d x)}}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {A \sqrt {b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt {\cos (c+d x)}}+\frac {B \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

1/2*A*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)+B*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+
1/2*A*arctanh(sin(d*x+c))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {17, 2748, 3768, 3770, 3767, 8} \[ \frac {A \sin (c+d x) \sqrt {b \cos (c+d x)}}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {A \sqrt {b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt {\cos (c+d x)}}+\frac {B \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]

[Out]

(A*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(2*d*Sqrt[Cos[c + d*x]]) + (A*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x]
)/(2*d*Cos[c + d*x]^(5/2)) + (B*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m + 1/2)*b^(n - 1/2)*Sqrt[b*v])/Sqrt[a*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx &=\frac {\sqrt {b \cos (c+d x)} \int (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {\left (A \sqrt {b \cos (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{\sqrt {\cos (c+d x)}}+\frac {\left (B \sqrt {b \cos (c+d x)}\right ) \int \sec ^2(c+d x) \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {A \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {\left (A \sqrt {b \cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{2 \sqrt {\cos (c+d x)}}-\frac {\left (B \sqrt {b \cos (c+d x)}\right ) \operatorname {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d \sqrt {\cos (c+d x)}}\\ &=\frac {A \tanh ^{-1}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{2 d \sqrt {\cos (c+d x)}}+\frac {A \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {B \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 65, normalized size = 0.61 \[ \frac {\sqrt {b \cos (c+d x)} \left (\sin (c+d x) (A+2 B \cos (c+d x))+A \cos ^2(c+d x) \tanh ^{-1}(\sin (c+d x))\right )}{2 d \cos ^{\frac {5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]

[Out]

(Sqrt[b*Cos[c + d*x]]*(A*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + (A + 2*B*Cos[c + d*x])*Sin[c + d*x]))/(2*d*Cos
[c + d*x]^(5/2))

________________________________________________________________________________________

fricas [A]  time = 1.02, size = 225, normalized size = 2.10 \[ \left [\frac {A \sqrt {b} \cos \left (d x + c\right )^{3} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{3}}, -\frac {A \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{3} - {\left (2 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

[1/4*(A*sqrt(b)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin(
d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*(2*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c)
)*sin(d*x + c))/(d*cos(d*x + c)^3), -1/2*(A*sqrt(-b)*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt
(cos(d*x + c))))*cos(d*x + c)^3 - (2*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))
/(d*cos(d*x + c)^3)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )}}{\cos \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

maple [A]  time = 0.23, size = 120, normalized size = 1.12 \[ \frac {\left (-A \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+A \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (\frac {1-\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+2 B \cos \left (d x +c \right ) \sin \left (d x +c \right )+A \sin \left (d x +c \right )\right ) \sqrt {b \cos \left (d x +c \right )}}{2 d \cos \left (d x +c \right )^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x)

[Out]

1/2/d*(-A*cos(d*x+c)^2*ln(-(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))+A*cos(d*x+c)^2*ln((1-cos(d*x+c)+sin(d*x+c))/
sin(d*x+c))+2*B*cos(d*x+c)*sin(d*x+c)+A*sin(d*x+c))*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(5/2)

________________________________________________________________________________________

maxima [B]  time = 0.71, size = 716, normalized size = 6.69 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

-1/4*((4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(sin
(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (2*(2*cos(2*d*x + 2
*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c
)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) + 1) + (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x +
2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c)
+ 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x +
 2*c) + 1)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*A*sqrt(b)/(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c)
 + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*si
n(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1) - 8*B*sqrt(b)*sin(2*d*x + 2*c)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*
c)^2 + 2*cos(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(7/2),x)

[Out]

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(7/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________